ERGs PART I

Sylvain Bolay

Tuesday, November 16, 2010

Novembre 16, 2010

Summary

- Hello, I'm a wave
- The unit circle and the Pythagorean theorem
- The sine wave
- Period and frequency
- The Phase Angle
- The Harmonics
- Building a square wave
- The Spectrum

Hello, I'm a wave

Hello, I'm a wave

http://en.wikipedia.org/wiki/File:Unit_circle_angles.svg

Tuesday, November 16, 2010

amplitude A [a.u.]

 $f = \frac{1}{T} \left[Hz \right]$

amplitude A [a.u.]

The Phase Angle

The Harmonics

A **harmonic** of a <u>wave</u> is a component <u>frequency</u> of the <u>signal</u> that is an <u>integer</u> multiple of the <u>fundamental frequency</u>.

For example, if the fundamental frequency is f, the harmonics have frequencies f, 2f, 3f, 4f, etc

Building a square wave

A square wave is based on n harmonics!

Building a square wave

$$SquarewaveApprox = \sum_{n=0}^{10} \frac{1}{(2 \cdot n + 1)} \cdot \sin((2n + 1) \cdot x)$$

Approximated in "Audacity" using a base frequency of 60 Hz, or sin(377x) for n=0

http://www.youtube.com/watch?v=y6crWlxKB_E

The Spectrum

The Fourier Transform

We can represent a function either in the time domain or the frequency domain. It is the Fourier transform which converts between the two representations. The Fourier transform is defined by the expression:

$$F(\omega) = \int f(t)e^{-i\omega t}dt$$

http://www.intmath.com/Fourier-series/2_Full-range-fourier-series.php

Tuesday, November 16, 2010

The Spectrum

