ERGs

PART I

Summary

- Hello, l'm a wave
- The unit circle and the Pythagorean theorem
- The sine wave
- Period and frequency
- The Phase Angle
- The Harmonics
- Building a square wave
- The Spectrum

Hello, l'm a wave

Hello, l'm a wave

The unit circle and the Pythagorean theorem

The sine wave

Period and frequency

$\pi+\pi / 2=2 \pi / 2+\pi / 2=3 \pi / 2$

Period and frequency

$\pi+\pi / 2=2 \pi / 2+\pi / 2=3 \pi / 2$

$$
f=\frac{1}{T}[H z]
$$

Period and frequency

Period and frequency

$$
f=\frac{1}{T}[H z]
$$

The Phase Angle

The Harmonics

A harmonic of a wave is a component frequency of the signal that is an integer multiple of the fundamental frequency.
For example, if the fundamental frequency is f, the harmonics have frequencies
$f, 2 f, 3 f, 4 f$, etc

Building a square wave

previous result + MWWWWWWWMA $=\int_{m}^{\frac{10}{7 \pi} \sin \frac{7}{4} \pi t} \int_{\mathrm{min}}^{\mathrm{min}}$

A square wave is based on n harmonics!

Building a square wave

$$
\text { SquarowaveApprox }=\sum_{n=0}^{10} \frac{1}{(2 \cdot n+1)} \cdot \sin ((2 n+1) \cdot x)
$$

Approximated in "Audacity" using a base frequency of 60 Hz , or $\sin (377 x)$ for $n=0$

The Spectrum

The Fourier Transform

We can represent a function either in the time domain or the frequency domain. It is the Fourier transform which converts between the two representations. The Fourier transform is defined by the expression:

$$
F(\omega)=\int f(t) e^{-i \omega t} d t
$$

The Spectrum

